

5

GeoSpatial Technology Landscape – R&D and its Linkages across Domains

Prof. K S RAJAN

Professor and Registrar, IIIT Hyderabad

Lab for Spatial Informatics,

Chairman, KAIINOS Geospatial Tech Pvt. Ltd.

ISRS, ISG, OSGeo, IEEE GRSS-CIS, ISPRS-WG V/8, CSI-SIG-BDA, FSMI, Geo4All, ISSE

RAJAN@IIIT.AC.IN

Evolving world of Geospatial Technology

	Sensing Systems & Digital Image Processing						
-ield Measurements GPS - Total	Aerial Photogrammetry	Digital Maps – Desktop to Web Geo Services					
Stations Mobile	Remote Sensing Digital Data	CAD GIS	Location as a	GeoAl			
platforms & IoT	Models Change Studies 	Interactive Maps Web mashups	Variable Consumerisation of Maps 	Spatio-temporal Data Science Analytics for Science Analytics for Decision Making			

Geospatial Landscape in India

Major Players

- Cartography and Mapping
 - Survey of India (since 18th century)
- Aerial Photogrammetry and Satellite Technology
 - ISRO
 - National Remote Sensing Center
- Solution Providers
 - Multiple Agencies like GSI, FSI, and others
 - Academia, RnD
 - Industry

Technology Evolution

- Aerial and Satellite Image Processing
 - Map as a Product
- GIS as a System
 - Mapping to Spatial Analysis
- Information Technology
 - Static to Interactive Maps (WebGIS)
 - GeoSpatial Services
- Spatial Data Science and GeoAl
 - Geospatial as a Science

RnD in GeoSpatial Technology

- Operational RnD
 - Adopting the technology to the Indian Conditions
 - Customisation of Processes
- Thematic or Domain driven RnD
 - Land Use Studies and Mapping
 - Land use products
 - Water Resources and Water Use
 - Agricultural Programs
 - Forestry Fires, Field integration and so on
- Fundamental Technology Developments

Emerging field of Spatial Data Sciences

- Spatial Big Data Analytics
 - Mining the data for (cause-effect) relationships
 - Is it driven by the known or the Unknown (processes?)?
 - Discovering Knowledge from Data
- GeoAl or Geo+Al?

Processes??

- Brings together GIS/Spatial Science, Data Mining, AI, HPC
- Extracting/Detecting/Identify Spatial Objects from Spatial and Temporal Data
- Data Gap filling / Estimation / Prediction Modelling
- Locational Intelligence to Decision Support
- Can AI/ML/DL change the way we look at GeoSpatial Data and

Lets, take Spatial Solutions in Aviation as an Example

• GIS Data uses in Airport environment (Understanding GIS requirements for Aviation)



٠

٠

- Asset maintenance
- Asset monitoring
- Logistics
- Utilities
- Pavement management
- Repair and Constructions

- Land and airspace planning
- Landside access planning
- Airspace regulations
- Environmental regulations
- Noise regulations
- Cargo handling
- Obstruction surface Creation/Modification
- Obstruction Analysis/Evaluation

Source: Report by Durga Prasad, Dhulipudi, KS Rajan

Accelerated Mapping

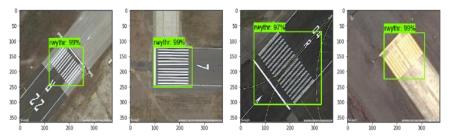
- We investigated the identification and classification of key Runway features automatically using **Machine Learning** and Computer Vision approaches.
- Durga & Rajan (2020,2021) studied the method of automatic airport feature extraction from satellite images.
 - Training Data Preparation
 - Transfer Learning Model
 - CNN

Outstanding Paper Award: Durga Prasad Dhulipudi., **& K S Rajan**. (2021). Geospatial Object Detection Using Machine Learning-Aviation Case Study. 2021 Integrated Communications Navigation and Surveillance Conference (ICNS), 1-8.

ACCELERATED MAPPING

Geospatial Object Detection Using Machine Learning-Aviation Case Study Phase II Improved accuracies with more samples (GPU)

150 200

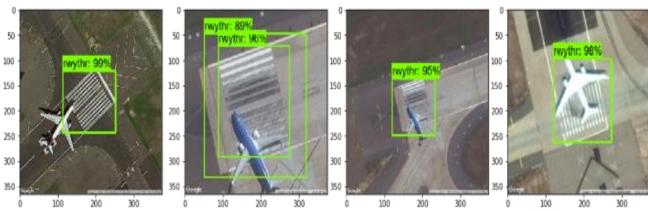


	SUMMARY OF PHASE1 CONFIGURATION AND RESULTS		SUMMARY OF PHASE2 CONFIGURATION AND RESULTS
System Configuration	E5470 - Intel HD Graphics 520. Core i5 6300U - 8 GB RAM - 256 GB SSD RAM, 2.4ghz, Windows 10 Enterprise 64 Bit	System Configuration	Dell Intel64 Family 6 Model ~2200 Mhz, Windows 10 Enterprise 64 Bit, Precision Tower 5810, Microsoft Windows 10 Enterprise, 64GB RAM
Model used	Transfer learning with Faster R-CNN ResNet	Model used	Transfer learning with Faster R-CNN ResNet
Training time	2 E bours	Training time	~33 minutes
	2.5 hours	Dataset Size	1025 images
Dataset Size	200 images	Train Test ratio	80% & 20%
Train Test ratio	80% & 20%	Iterations	2000
Iterations	200	Confidence	>94%
Confidence	>85%	ТР	>92%
ТР	>60%	Failure	Localization requires improvement
Failure	Localization requires improvement		

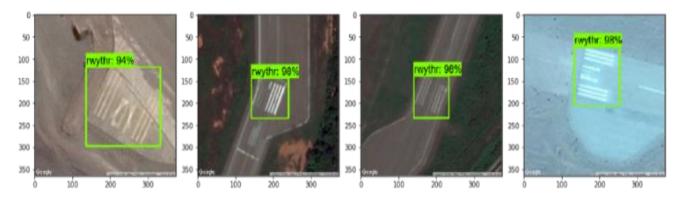
Geospatial Object Detection Using Machine Learning-Aviation Case Study

Phase II

With more samples and increasing the variety, we noticed accuracies **above 95%** even in the case of <u>occlusions</u> also.



Similar level of true positives detected in case of highly **unclear ambiguous** images .



• Model inference in Occlusions and Ambiguity- Work In Progress

Agriculture: What is a Good Monitoring System ?

- A good baseline data
 - Coverage, periodic updates, record of causes of changes, if any
- Is Crop-calendar a good baseline?
 - esp. if it is one calendar for the whole district
- What about uncertainties in the crop calendar?
- Can Phenology be a good growth parameter ?

How Events like droughts affect Cropping patterns in a region?

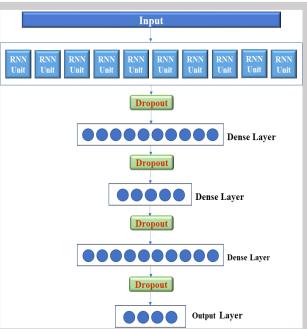
- > All are areas affected similarly/homogenously ?
- Can such analysis help us identify the Causative and underlying factors?

Deep Learning Approach for Cropping practices

Used 3 Deep Learning methods –

- 1-Dimensional Convolutional Neural
- Long Short Term Memory Networks (LSTM)
- Gated Recurrent Units (GRU)

Image Type	MODIS EVI
Ground truth	NRSC LULC
Resolution	500m
Time Period	12 years
No. of Images	276 (12 X 23)



Results Showed -

LSTM performs better (63% accuracy) Trade-off between Image resolution, GT and Model appropriateness

Events (Drought) and Cropping Practices agricultural-year 2008-09 to 2011-12 (4 crop years)

10

5

No. of pixels (%) 7.5 8 02

6 1

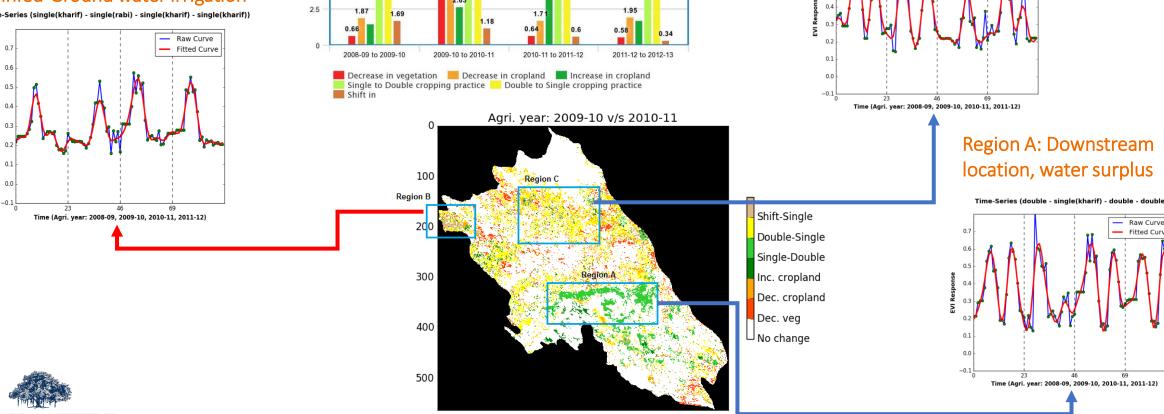
11.58

4.99

3.91

Region B: Away from River, Rainfed-Ground water irrigation

Time-Series (single(kharif) - single(rabi) - single(kharif) - single(kharif))



3.82

D Baheti, KS Rajan. 2017. A Shape-Based Approach to Spatio-Temporal Data Analysis Using Satellite Imagery. Proceedings of the 4th IEEE International Conference on Data Science and Advanced Analytics (DSAA), Tokyo, Japan. Oct 19-21, 2017.

5.16

Raw Curve itted Curv

Region C: Upstream, Mostly Irrigation

Raw Curve

Fitted Curve

(canal/ground water) based

me-Series (double - double - single(rabi) - double)

Spatio-Temporal Data Analytics of Crop Yields

- Are all FOOD PRODUCING Regions/Districts in India Sustainable?

- How can we Assess Food Production / Crop Yields ?
- Are current methods/tools useful to do this?

- Are they **consistent Performers** or change over Space and time?

FACTORS AFFECTING YIELD

- Ecological factors
 - Availability of water resources (Rainfall, Irrigation mechanisms)
 - Type and quality of Soil
 - Temperature
 - Fertilizers, etc.
- Non-ecological factors Management Practices
 - Cropping practices
 - Allocation of funds and resources
 - Training and education by government
 - Other socio-economic factors

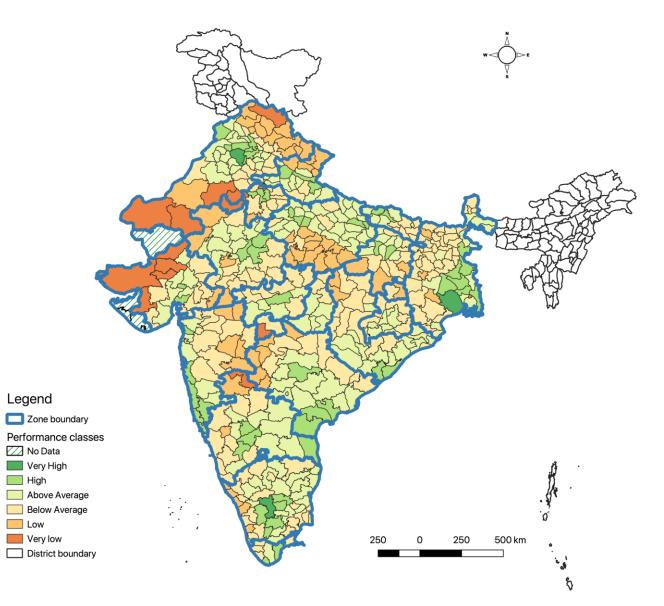
A Customer Centric Lens for Good Agricultural Practices

September 2019

MERA 🔀 IDRC | CRDI Installard Development Instantication

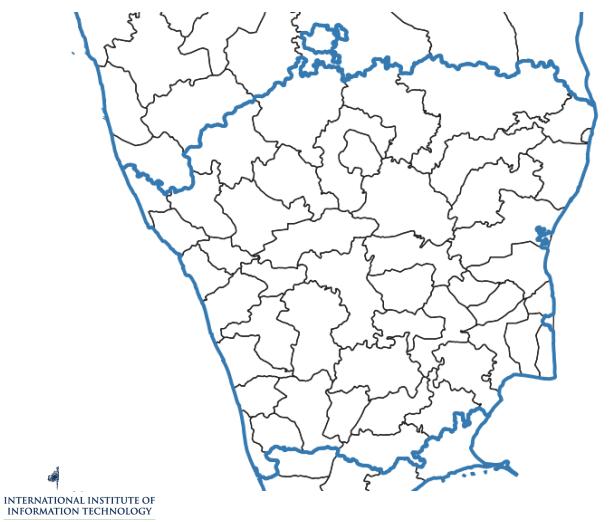
RESULTS

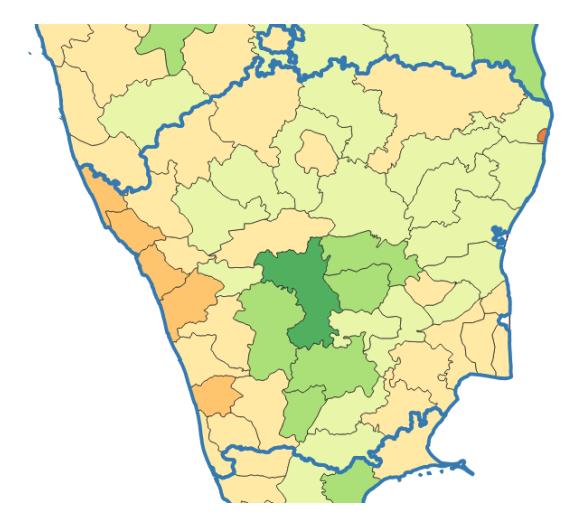
R2. PERFORMANCE CLASSES WITHIN ZONES



RESULTS

R2. Classification for a zone



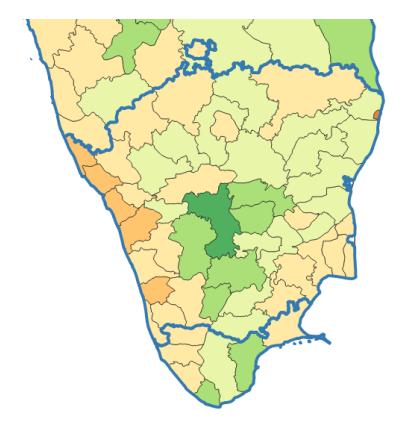


HYDERABAD

Re-Analysis of TEMPORAL TRENDS

- For a specific zone,
 - We have performance classes
 - i.e., groups of homogeneous districts
- Performance may
 - remain consistent
 - Increase/decrease
- Observe effects on performance of each class
 - Drought/Flood years
- Within a zone
 - For the districts of a performance class
- Plot their annual average with time

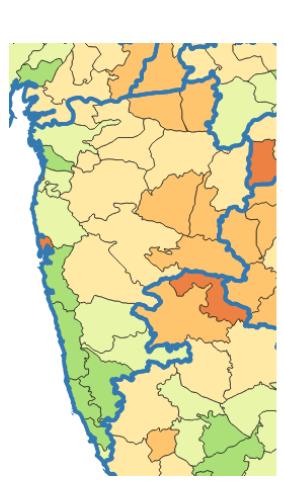
TEMPORAL TRENDS (1/2)

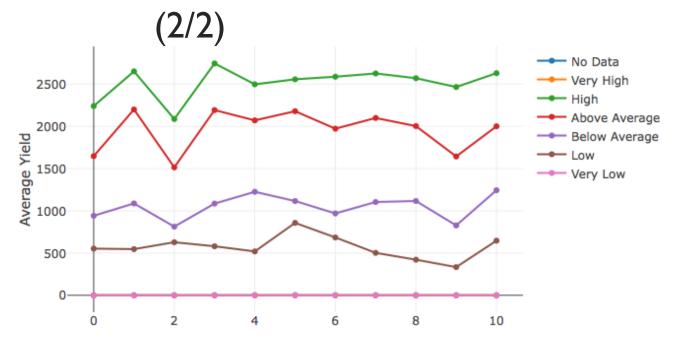




INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY H Y D E R A B A D

TEMPORAL TRENDS





Class ID	No of districts	Min (in kg/ha)	Max (in kg/Ha)
1	0	-	-
2	6	1889.2	3171.4
3	7	1080	2827.4
4	9	489.8	2420.6
5	5	319.1	1014.4
6	0	-	-

Observations from Spatio-Temporal Analysis

- Spatio-Temporal output analysis
 - gives an understanding of yield patterns across the country
- Good and poor performing districts
 - In a given neighborhood
 - High performers close to the center of the zones
 - Performance deteriorates near the boundary
- Performance Statistics
 - Low 87 (Combines 'Very Low' and 'Low')
 - Moderate 344 (Combines 'Above average' and 'Below Average')
 - High 61 (Combines 'High' and 'Very High')
- High remains high; Low remains low
 - Performance resilient with time; lines do not intersect
 - No drastic changes even in extreme events
 - External factors not predominant
 - Irrespective of the amount of inputs provided

$Geo \leftrightarrow AI$: Where to go from here

- Early stages of Adoption of AI/ML/DL methods
 - Using more like a black box / model
 - Works well for general solutions
 - Supports Large data analysis and Computationally heavy processes
 - While results give good insights, throws-up more questions
 - When it fails to capture key Features and its context
- Geo←→Al true Integration when Domain Adaptation of these Algorithms are possible
 - Spatial context
 - Temporal uncertainties
 - Processes capture or Indicative factors
 - From Data Analysis → Information generation → Knowledge discovery that supports/advances Science

Land Use

Modelling

Urban,

vgricultural

Lab for Spatial Informatics - Research Overview

✤ Spatial Data Science/ Geo-AI **GeoSpatial Science** Spatio-temporal Analytics / Data Mining / Databases Health, Crop Yield analysis, Climate, Crime and Technology Platforms developed Remote Sensing and IoT for Water Quality Forest Dynam Geo-Visualization ✤ 4D Flood Visualization Deep Learning on Terrain Super Resolution 3D realistic terrains/topography **Optical Imagery** Geo-Governance - Web/Mobile GIS Feature Extraction – Roads. FOSS4G Air Pollution and Human Health **Buildings** Water Quality and Quantity p Modelling Time-series Analysis – Crop Environmental phenology & Season Cale OBIA Policy **Spatial Modelling** \checkmark HyperSpectral Sensing **Strategic Environmental Assessments** Key Parameter **River Basin Hydrology** Characterisation - Vegetatio **Cli**mate Extremes and Impacts **RS** – Parameter Estimation Water Quality in Inland waterbodies **Spatial Modelling Remote Sensing Faculty at LSI:** & Simulations

IoT and Air Pollution Monitoring / Evaluation

+ Collaborations with Other Institutions and Organisations

Prof. KS Rajan

Dr. RC Prasad Dr. S Rehana

ana Dr. R Nagaraja

Lab for Spatial Informatics

Thank You!

Contact Info: K S Rajan (rajan@iiit.ac.in)

